On the Rainfall Triggering of Phlegraean Fields Volcanic Tremors

Author:

Scafetta NicolaORCID,Mazzarella AdrianoORCID

Abstract

We study whether the shallow volcanic seismic tremors related to the bradyseism observed at the Phlegraean Fields (Campi Flegrei, Pozzuoli, and Naples) from 2008 to 2020 by the Osservatorio Vesuviano could be partially triggered by local rainfall events. We use the daily rainfall record measured at the nearby Meteorological Observatory of San Marcellino in Naples and develop two empirical models to simulate the local seismicity starting from the hypothesized rainfall-water effect under different scenarios. We found statistically significant correlations between the volcanic tremors at the Phlegraean Fields and our rainfall model during years of low bradyseism. More specifically, we observe that large amounts and continuous periods of rainfall could trigger, from a few days to 1 or 2 weeks, seismic swarms with magnitudes up to M = 3. The results indicate that, on long timescales, the seismicity at the Phlegraean Fields is very sensitive to the endogenous pressure from the deep magmatic system causing the bradyseism, but meteoric water infiltration could play an important triggering effect on short timescales of days or weeks. Rainfall water likely penetrates deeply into the highly fractured and hot shallow-water-saturated subsurface that characterizes the region, reduces the strength and stiffness of the soil and, finally, boils when it mixes with the hot hydrothermal magmatic fluids migrating upward. The structural collapse of the saturated fractured soil and the mixing of the meteoric fluid with the hot deep fluids triggers the local seismic activity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference47 articles.

1. Volcanic unrest scenarios and impact assessment at Campi Flegrei caldera, Southern Italy;Charlton;J. Appl. Volcanol.,2020

2. Vesuvius, Campi Flegrei, and Campanian Volcanism;De Vivo,2020

3. Volcanological risk associated with Vesuvius and Campi Flegrei;De Vivo,2020

4. Influence of external tidal and meteorological forces on the bradyseismic phenomenon in the Phlegraean Fields

5. Does the solar cycle modulate seismic and volcanic activity?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3