Influence of High Energy Ball Milling and Dispersant on Capacitive Properties of Fe2O3—Carbon Nanotube Composites

Author:

Zhang Chengwei,Zhitomirsky IgorORCID

Abstract

This investigation is motivated by increasing interest in ferrimagnetic materials and composites, which exhibit electrical capacitance. It addresses the need for the development of magnetic materials with enhanced capacitive properties and low electrical resistance. γ-Fe2O3-multiwalled carbon nanotube (MWCNT) composites are developed by colloidal processing and studied for energy storage in negative electrodes of supercapacitors. High energy ball milling (HEBM) of ferrimagnetic γ-Fe2O3 nanoparticles results in enhanced capacitive properties. The effect of HEBM on particle morphology is analyzed. Gallocyanine is used as a co-dispersant for γ-Fe2O3 and MWCNTs. The polyaromatic structure and catechol ligand of gallocyanine facilitated its adsorption on γ-Fe2O3 and MWCNTs, respectively, and facilitated their electrostatic dispersion and mixing. The adsorption mechanisms are discussed. The highest capacitance of 1.53 F·cm−2 is achieved in 0.5 M Na2SO4 electrolyte for composites, containing γ-Fe2O3, which is high energy ball milled and co-dispersed with MWCNTs using gallocyanine. HEBM and colloidal processing strategies allow high capacitance at low electrical resistance, which facilitates efficient charge–discharge. Obtained composites are promising for fabrication of multifunctional devices based on mutual interaction of ferrimagnetic and capacitive properties.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3