Artificial Intelligence Application in Solid State Mg-Based Hydrogen Energy Storage

Author:

Huang Song-JengORCID,Mose Matoke PeterORCID,Kannaiyan SathiyalingamORCID

Abstract

The use of Mg-based compounds in solid-state hydrogen energy storage has a very high prospect due to its high potential, low-cost, and ease of availability. Today, solid-state hydrogen storage science is concerned with understanding the material behavior of different compositions and structure when interacting with hydrogen. Finding a suitable material has remained an elusive idea, and therefore, this review summarizes works by various groups, the milestones they have achieved, and the roadmap to be taken on the study of hydrogen storage using low-cost magnesium composites. Mg-based compounds are further examined from the perspective of artificial intelligence studies, which helps to improve prediction of their properties and hydrogen storage performance. There exist several techniques to improve the performance of Mg-based compounds: microstructure modification, use of catalytic additives, and composition regulation. Microstructure modification is usually achieved by employing different synthetic techniques like severe plastic deformation, high energy ball milling, and cold rolling, among others. These synthetic approaches are discussed herein. In this review, a discussion of key parameters and operating conditions are highlighted in a view to finding high storage capacity and faster kinetics. Furthermore, recent approaches like machine learning have found application in guiding the experimental design. Hence, this review paper also explores how machine learning techniques have been utilized to fasten the materials research. It is however noted that this study is not exhaustive in itself.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3