CNN Based on Transfer Learning Models Using Data Augmentation and Transformation for Detection of Concrete Crack

Author:

Islam Md. MonirulORCID,Hossain Md. BelalORCID,Akhtar Md. Nasim,Moni Mohammad AliORCID,Hasan Khondokar FidaORCID

Abstract

Cracks in concrete cause initial structural damage to civil infrastructures such as buildings, bridges, and highways, which in turn causes further damage and is thus regarded as a serious safety concern. Early detection of it can assist in preventing further damage and can enable safety in advance by avoiding any possible accident caused while using those infrastructures. Machine learning-based detection is gaining favor over time-consuming classical detection approaches that can only fulfill the objective of early detection. To identify concrete surface cracks from images, this research developed a transfer learning approach (TL) based on Convolutional Neural Networks (CNN). This work employs the transfer learning strategy by leveraging four existing deep learning (DL) models named VGG16, ResNet18, DenseNet161, and AlexNet with pre-trained (trained on ImageNet) weights. To validate the performance of each model, four performance indicators are used: accuracy, recall, precision, and F1-score. Using the publicly available CCIC dataset, the suggested technique on AlexNet outperforms existing models with a testing accuracy of 99.90%, precision of 99.92%, recall of 99.80%, and F1-score of 99.86% for crack class. Our approach is further validated by using an external dataset, BWCI, available on Kaggle. Using BWCI, models VGG16, ResNet18, DenseNet161, and AlexNet achieved the accuracy of 99.90%, 99.60%, 99.80%, and 99.90% respectively. This proposed transfer learning-based method, which is based on the CNN method, is demonstrated to be more effective at detecting cracks in concrete structures and is also applicable to other detection tasks.

Funder

University of Queensland

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3