Asphalt Pavement Pothole Detection and Segmentation Based on Wavelet Energy Field

Author:

Wang Penghui1ORCID,Hu Yongbiao1,Dai Yong1,Tian Mingrui1

Affiliation:

1. National Engineering Laboratory for Highway Maintenance Equipment, Chang’an University, Xi’an, China

Abstract

Potholes are one type of pavement surface distresses whose assessment is essential for developing road network maintenance strategies. Existing methods for automatic pothole detection either rely on expensive and high-maintenance equipment or could not segment the pothole accurately. In this paper, an asphalt pavement pothole detection and segmentation method based on energy field is put forward. The proposed method mainly includes two processes. Firstly, the wavelet energy field of the pavement image is constructed to detect the pothole by morphological processing and geometric criterions. Secondly, the detected pothole is segmented by Markov random field model and the pothole edge is extracted accurately. This methodology has been implemented in a MATLAB prototype, trained, and tested on 120 pavement images. The results show that it can effectively distinguish potholes from cracks, patches, greasy dirt, shadows, and manhole covers and accurately segment the pothole. For pothole detection, the method reaches an overall accuracy of 86.7%, with 83.3% precision and 87.5% recall. For pothole segmentation, the overlap degree between the extracted pothole region and the original pothole region is mostly more than 85%, which accounts for 88.6% of the total detected pavement pothole images.

Funder

Chang’an University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Road Surface Defect Detection—From Image-Based to Non-Image-Based: A Survey;IEEE Transactions on Intelligent Transportation Systems;2024-09

2. A Review of Vision-Based Pothole Detection Methods Using Computer Vision and Machine Learning;Sensors;2024-08-30

3. Advanced Pothole Detection Using Image Processing;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

4. Spatiotemporal kernel density clustering for wide area near Real-Time pothole detection;Advanced Engineering Informatics;2024-04

5. Multi-layers deep learning model with feature selection for automated detection and classification of highway pavement cracks;Smart and Sustainable Built Environment;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3