Author:
Pan Haipeng,Chen Chengte,Gu Minming
Abstract
Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is important for electronic equipment. A new algorithm is proposed to aim at the nonlinear degradation caused by capacity regeneration and random fluctuations. Firstly, the health state degradation curve of LIBs is divided into the normal degradation trend part, capacity regeneration part, and random fluctuation part. Secondly, the capacity degradation curve of LIBs is decomposed by the empirical mode decomposition (EMD) to obtain the known long-term degradation trend part of LIBs. Then, the long short-term memory (LSTM) neural network is used to predict the future normal degradation trend part based on the known long-term degradation trend part of LIBs. In addition, the LIBs’ state of health (SOH), the initial state of charge (SOC), and the rest time are taken as the inputs of Gaussian process regression (GPR) to predict the LIBs’ capacity regeneration part. After that, random numbers obeying the Stable distribution are generated as the random fluctuation part of LIBs. Finally, the Monte Carlo simulation is used to predict the probability density distribution of the RUL of LIBs. The paper is verified by the LIBs’ public dataset provided by the University of Maryland. The experimental results show that the predicted RMSE of the proposed method is lower than 0.6%.
Funder
Zhejiang Science Technology Department Public Service Technology Research Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献