A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations

Author:

Pan Haipeng,Chen Chengte,Gu Minming

Abstract

Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is important for electronic equipment. A new algorithm is proposed to aim at the nonlinear degradation caused by capacity regeneration and random fluctuations. Firstly, the health state degradation curve of LIBs is divided into the normal degradation trend part, capacity regeneration part, and random fluctuation part. Secondly, the capacity degradation curve of LIBs is decomposed by the empirical mode decomposition (EMD) to obtain the known long-term degradation trend part of LIBs. Then, the long short-term memory (LSTM) neural network is used to predict the future normal degradation trend part based on the known long-term degradation trend part of LIBs. In addition, the LIBs’ state of health (SOH), the initial state of charge (SOC), and the rest time are taken as the inputs of Gaussian process regression (GPR) to predict the LIBs’ capacity regeneration part. After that, random numbers obeying the Stable distribution are generated as the random fluctuation part of LIBs. Finally, the Monte Carlo simulation is used to predict the probability density distribution of the RUL of LIBs. The paper is verified by the LIBs’ public dataset provided by the University of Maryland. The experimental results show that the predicted RMSE of the proposed method is lower than 0.6%.

Funder

Zhejiang Science Technology Department Public Service Technology Research Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3