Affiliation:
1. School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
Abstract
Accurately predicting the remaining lifespan of lithium-ion batteries is critical for the efficient and safe use of these devices. Predicting a lithium-ion battery’s remaining lifespan is challenging due to the non-linear changes in capacity that occur throughout the battery’s life. This study proposes a fused prediction model that employs a multimodal decomposition approach to address the problem of non-linear fluctuations during the degradation process of lithium-ion batteries. Specifically, the capacity attenuation signal is decomposed into multiple mode functions using successive variational mode decomposition (SVMD), which captures capacity fluctuations and a primary attenuation mode function to account for the degradation of lithium-ion batteries. The hyperparameters of the long short-term memory network (LSTM) are optimized using the tuna swarm optimization (TSO) technique. Subsequently, the trained prediction model is used to forecast various mode functions, which are then successfully integrated to obtain the capacity prediction result. The predictions show that the maximum percentage error for the projected results of five unique lithium-ion batteries, each with varying capacities and discharge rates, did not exceed 1%. Additionally, the average relative error remained within 2.1%. The fused lifespan prediction model, which integrates SVMD and the optimized LSTM, exhibited robustness, high predictive accuracy, and a degree of generalizability.
Funder
National Natural Science Foundation of China
Education Department of Shaanxi Provincial Government
Natural Science Foundation of Shaanxi
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献