Deep Reinforcement Learning for Intelligent Penetration Testing Path Design

Author:

Yi Junkai1ORCID,Liu Xiaoyan2

Affiliation:

1. School of Automation, Key Laboratory of Modern Measurement and Control, Technology Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China

2. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

Penetration testing is an important method to evaluate the security degree of a network system. The importance of penetration testing attack path planning lies in its ability to simulate attacker behavior, identify vulnerabilities, reduce potential losses, and continuously improve security strategies. By systematically simulating various attack scenarios, it enables proactive risk assessment and the development of robust security measures. To address the problems of inaccurate path prediction and difficult convergence in the training process of attack path planning, an algorithm which combines attack graph tools (i.e., MulVAL, multi-stage vulnerability analysis language) and the double deep Q network is proposed. This algorithm first constructs an attack tree, searches paths in the attack graph, and then builds a transfer matrix based on depth-first search to obtain all reachable paths in the target system. Finally, the optimal path for target system attack path planning is obtained by using the deep double Q network (DDQN) algorithm. The MulVAL double deep Q network(MDDQN) algorithm is tested in different scale penetration testing environments. The experimental results show that, compared with the traditional deep Q network (DQN) algorithm, the MDDQN algorithm is able to reach convergence faster and more stably and improve the efficiency of attack path planning.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3