Formal Methods and Validation Techniques for Ensuring Automotive Systems Security

Author:

Krichen Moez12ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computer Science and Information Technology, Al-Baha University, Al-Baha 65528, Saudi Arabia

2. ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia

Abstract

The increasing complexity and connectivity of automotive systems have raised concerns about their vulnerability to security breaches. As a result, the integration of formal methods and validation techniques has become crucial in ensuring the security of automotive systems. This survey research paper aims to provide a comprehensive overview of the current state-of-the-art formal methods and validation techniques employed in the automotive industry for system security. The paper begins by discussing the challenges associated with automotive system security and the potential consequences of security breaches. Then, it explores various formal methods, such as model checking, theorem proving, and abstract interpretation, which have been widely used to analyze and verify the security properties of automotive systems. Additionally, the survey highlights the validation techniques employed to ensure the effectiveness of security measures, including penetration testing, fault injection, and fuzz testing. Furthermore, the paper examines the integration of formal methods and validation techniques within the automotive development lifecycle, including requirements engineering, design, implementation, and testing phases. It discusses the benefits and limitations of these approaches, considering factors such as scalability, efficiency, and applicability to real-world automotive systems. Through an extensive review of relevant literature and case studies, this survey provides insights into the current research trends, challenges, and open research questions in the field of formal methods and validation techniques for automotive system security. The findings of this survey can serve as a valuable resource for researchers, practitioners, and policymakers involved in the design, development, and evaluation of secure automotive systems.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3