Optimizing Design and Operational Parameters for Enhanced Mixing and Hydrodynamics in Bubbling Fluidized Bed Gasifiers: An Experimental and CFD-Based Approach

Author:

Raza Naveed1ORCID,Mehdi Rifat1,Ahsan Muhammad1ORCID,Mehran Muhammad Taqi1,Naqvi Salman Raza1ORCID,Uddin Emad2ORCID

Affiliation:

1. School of Chemical & Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan

2. School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan

Abstract

An experimental investigation of hydrodynamics of gas-solid flow is carried out by engaging different designs of air distributor plates. An analysis of three different plates, i.e., perforated, 45° slotted and novel hybrid plate, revealed the difference in pressure drop and minimum fluidization velocities (Umf) for varying input operational variables. Umf is found to be lowest for perforated and highest for 45° slotted plate, whereas pressure drop is found to be highest for 45° slotted plate and lowest for novel hybrid distributor plate. The bubbles rise velocity ratio (Umf,b/Umf,f) is noticed minimum for 45° slotted plate due to relatively larger bubbles originating from the bigger slot openings and maximum for perforated distributor plate owing to smaller bubbles with dominant axial rise. Furthermore, the bed height rise ratio (h/L) is observed as a minimum for perforated distributor and maximum for 45° slotted plate due to larger bubbles through 45° slots rupturing the bed surface, causing more bed expansion. Furthermore, CFD analysis is also carried out to observe the insight flow dynamics using the distributor plates. The simulations use a two-fluid model (TFM) and K-Epsilon turbulence models. CFD model shows promising results in agreement with the experimental results. CFD results revealed that the lower portion enhanced lateral dispersion/mixing of solid particles due to 45° angular openings of an air inlet. In contrast, the perforated plate exhibited a straight upward motion of small air bubbles, causing no radial/lateral mixing. CFD results for the hybrid plate show the mixed axial as well as lateral mixing of solids by revealing velocity distribution; therefore, the novel hybrid plate is found to be an optimum distributor plate due to its lowest pressure drop, adequate Umf, intermediary bed height rise ratio and moderate bubble rise velocity ratio across the bed.

Funder

National University of Sciences and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3