Numerical Simulation of Hydrodynamics and Heat Transfer in a Reactor with a Fluidized Bed of Catalyst Particles in a Three-Dimensional Formulation

Author:

Ulitin Nikolai V.1ORCID,Tereshchenko Konstantin A.1,Rodionov Ilya S.1ORCID,Alekseev Konstantin A.1ORCID,Shiyan Daria A.1,Kharlampidi Kharlampii E.1,Mezhuev Yaroslav O.23

Affiliation:

1. Department of General Chemical Technology, Kazan National Research Technological University, Karl Marx Str., 68, 420015 Kazan, Russia

2. Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia

3. A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str., 28, 119334 Moscow, Russia

Abstract

The hydrodynamics and heat transfer in a reactor with a fluidized bed of catalyst particles and an inert material were simulated. The particle bed (the particle density was 2350 kg/m3, and the particle diameter was 1.5 to 4 mm) was located in a distribution device which was a grid of 90 × 90 × 60 mm vertical baffles. The behavior of the liquefying medium (air) was modeled using a realizable k-ε turbulence model. The behavior of particles was modeled using the discrete element method (DEM). In order to reduce the slugging effect, the particles were divided into four separate horizontal layers. It was determined that with the velocity of the liquefying medium close to the minimum fluidization velocity (1 m/s), slugging fluidization is observed. At a velocity of the liquefying medium of 3 m/s, turbulent fluidization in the lowest particle layer and bubbling fluidization on subsequent particle layers are observed. With an increase in the velocity of the liquefying medium over 3 m/s, entrainment of particles is observed. It was shown that a decrease in the density of the liquefying medium from 1.205 kg/m3 to 0.383 kg/m3 when it is heated from 298 K to 923 K would not significantly affect the hydraulic resistance of the bed. Based on the obtained results, it can be stated that the obtained model is optimal for such problems and is suitable for the further description of experimental data.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3