Automatic Detection of Inconsistencies and Hierarchical Topic Classification for Open-Domain Chatbots

Author:

Rodríguez-Cantelar Mario1ORCID,Estecha-Garitagoitia Marcos2ORCID,D’Haro Luis Fernando2ORCID,Matía Fernando1ORCID,Córdoba Ricardo2ORCID

Affiliation:

1. Intelligent Control Group (ICG), Centre for Automation and Robotics (CAR) UPM-CSIC, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal, 2, 28006 Madrid, Spain

2. Speech Technology and Machine Learning Group (THAU), ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense, 30, 28040 Madrid, Spain

Abstract

Current State-of-the-Art (SotA) chatbots are able to produce high-quality sentences, handling different conversation topics and larger interaction times. Unfortunately, the generated responses depend greatly on the data on which they have been trained, the specific dialogue history and current turn used for guiding the response, the internal decoding mechanisms, and ranking strategies, among others. Therefore, it may happen that for semantically similar questions asked by users, the chatbot may provide a different answer, which can be considered as a form of hallucination or producing confusion in long-term interactions. In this research paper, we propose a novel methodology consisting of two main phases: (a) hierarchical automatic detection of topics and subtopics in dialogue interactions using a zero-shot learning approach, and (b) detecting inconsistent answers using k-means and the Silhouette coefficient. To evaluate the efficacy of topic and subtopic detection, we use a subset of the DailyDialog dataset and real dialogue interactions gathered during the Alexa Socialbot Grand Challenge 5 (SGC5). The proposed approach enables the detection of up to 18 different topics and 102 subtopics. For the purpose of detecting inconsistencies, we manually generate multiple paraphrased questions and employ several pre-trained SotA chatbot models to generate responses. Our experimental results demonstrate a weighted F-1 value of 0.34 for topic detection, a weighted F-1 value of 0.78 for subtopic detection in DailyDialog, then 81% and 62% accuracy for topic and subtopic classification in SGC5, respectively. Finally, to predict the number of different responses, we obtained a mean squared error (MSE) of 3.4 when testing smaller generative models and 4.9 in recent large language models.

Funder

European Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E.M., Roller, S., Ung, M., Chen, M., Arora, K., and Lane, J. (2022). BlenderBot 3: A deployed conversational agent that continually learns to responsibly engage. arXiv.

2. Thoppilan, R., Freitas, D.D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.T., Jin, A., Bos, T., Baker, L., and Du, Y. (2022). LaMDA: Language Models for Dialog Applications. arXiv.

3. OpenAI (2023). GPT-4 Technical Report. arXiv.

4. Rodríguez-Cantelar, M., de la Cal, D., Estecha, M., Gutiérrez, A.G., Martín, D., Milara, N.R.N., Jiménez, R.M., and D’Haro, L.F. (2021). Alexa Prize SocialBot Grand Challenge 4 Proceedings, Available online: https://www.amazon.science/alexa-prize/proceedings/genuine2-an-open-domain-chatbot-based-on-generative-models.

5. Hakkani-Tür, D. (2021). Alexa Prize SocialBot Grand Challenge 4 Proceedings, Available online: https://www.amazon.science/alexa-prize/proceedings/alexa-prize-socialbot-grand-challenge-year-iv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3