Green Synthesis of Cobalt Oxide Nanoparticles Using Hyphaene thebaica Fruit Extract and Their Photocatalytic Application

Author:

Safdar Ammara123,Mohamed Hamza Elsayed Ahmed12ORCID,Hkiri Khaoula12,Muhaymin Abdul123ORCID,Maaza Malik12

Affiliation:

1. UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology, Muckleneuk Ridge, College of Graduate Studies, University of South Africa, P.O. Box 392, Pretoria 0002, South Africa

2. Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, P.O. Box 722, Somerset West 7129, South Africa

3. Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad 44000, Pakistan

Abstract

Cobalt oxide, a multifunctional, anti-ferromagnetic p-type semiconductor with an optical bandgap of ~2.00 eV, exhibits remarkable catalytic, chemical, optical, magnetic, and electrical properties. In our study, cobalt oxide nanoparticles (Co3O4 NPs) were prepared by the green synthesis method using dried fruit extracts of Hyphaene thebaica (doum palm) as a cost-effective reducing and stabilizing agent. Scanning electron microscopy (SEM) depicts stable hollow spherical entities which, consist of interconnected Co3O4 NPs, while energy-dispersive X-ray spectroscopy (EDS) indicates the presence of Co and O. The obtained product was identified by X-ray diffraction (XRD) that showed a sharp peak at (220), (311), (222), (400), (511) indicating the high crystallinity of the product. The Raman peaks indicate the Co3O4 spinel structure with an average shift of Δν~9 cm−1 (191~470~510~608~675 cm−1). In the Fourier transform infrared spectroscopy (FT-IR) spectrum, the major bands at 3128 cm−1, 1624 cm−1, 1399 cm−1, 667 cm−1, and 577 cm−1 can be attributed to the carbonyl functional groups, amides, and Co3O4 NPs, respectively. The photocatalytic activity of the synthesized NPs was evaluated by degrading methylene blue dye under visible light. Approximately 93% degradation was accomplished in the reaction time of 175 min at a catalyst loading of 1 g/L under neutral pH. This study has shown that Co3O4 is a promising material for photocatalytic degradation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3