High photocatalytic capacity of porous ceramic-based powder doped with MgO

Author:

Bouras Dikra,Fellah MamounORCID,Mecif Abla,Barillé Régis,Obrosov Aleksei,Rasheed Mohammed

Abstract

AbstractTo purify water at low cost for our daily life, the effect of ceramic-based (mullite–cristobalite) and (mullite–zircon) powders doped with different amounts of magnesium oxide (MgO) (10 and 20 wt%) was studied. These compounds are made of a local raw material DD3 with addition of zirconia (ZrO2) to create an open porosity. The powders were prepared by the traditional mixing method with the help of an automated crushing. The effect of MgO doping on structural, morphological and photocatalytic properties of the material was studied by various analytical techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared, and UV–visible spectrometry. The results of XRD proved that there was a deformation in the crystal structure of the two types of ceramics after addition, which resulted in a shift of the spectra to the right, while SEM proved the presence of pores with a larger size as the proportion of MgO increases. The chemical composition of the basic components of the ceramic compounds as well as the additive was confirmed with EDS and IR spectra. The final results show that ceramics with added zirconia (DD3Z) and doped with 10% of MgO have a better photocatalytic efficiency than ceramics without zirconia. This important effect could be related to the higher rate of porosity, which provides a more active surface. The 10% MgO content showed a high photoactivity of 77.33% in only 15 min. The maximum hydrolysis rate obtained with Orange II was 92.95% after a period of 45 min with DD3Z/MgO powders.

Funder

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3