Abstract
This article presents a novel methodology to design swash plate type axial piston machines based on computationally based approach. The methodology focuses on the design of the main lubricating interfaces present in a swash plate type unit: the cylinder block/valve plate, the piston/cylinder, and the slipper/swash plate interface. These interfaces determine the behavior of the machine in term of energy efficiency and durability. The proposed method couples for the first time the numerical models developed at the authors’ research center for each separated tribological interface in a single optimization framework. The paper details the optimization procedure, the geometry, and material considered for each part. A physical prototype was also built and tested from the optimal results found from the numerical model. Tests were performed at the authors’ lab, confirming the validity of the proposed method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献