Abstract
The building sector accounts for approximately 40% of national energy consumption, contributing to the environmental crisis of global warming. Using energy saving measures (e.g., improved thermal insulation, highly energy-efficient electrical and mechanical systems) provides opportunities to reduce energy consumption in existing buildings. Furthermore, if the life cycle cost (i.e., installation, operation and maintenance cost) of the measures is considered with their energy saving potential, it is possible to establish a cost-effective energy retrofit plan. Therefore, this research develops an energy saving strategy model considering its saving potential and life cycle cost of the measures for reducing energy consumption in existing buildings. To test the validity of the proposed model, a case study is carried out on an educational facility in South Korea, in response to its overconsumption of energy. The results demonstrate that in terms of energy saving and life cycle cost, the optimal energy retrofit plan is more cost-effective than the existing plan. Also, the break-even point for the optimal energy retrofit plan is within five years, and then revenue from energy saving continually occurs until 2052. For energy retrofit of existing buildings, using the proposed model would enable building owners to maximize energy savings while minimizing the life cycle cost.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference38 articles.
1. European Commission (EC) Statistical Pocektbook 2018
https://ec.europa.eu/energy/sites/ener/files/documents/PocketBook_ENERGY_2015 PDF final.pdf
2. The Handbook of Sustainable Refurbishment: Non-Domestic Buildings;Baker,2009
3. Life Cycle Assessment of Building Renovation Measures–Trade-off between Building Materials and Energy
4. Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献