Speed Control of Permanent Magnet DC Motor with Friction and Measurement Noise Using Novel Nonlinear Extended State Observer-Based Anti-Disturbance Control

Author:

J. Humaidi AmjadORCID,Kasim Ibraheem IbraheemORCID

Abstract

In this paper, a novel finite-time nonlinear extended state observer (NLESO) is proposed and employed in active disturbance rejection control (ADRC) to stabilize a nonlinear system against system’s uncertainties and discontinuous disturbances using output feedback based control. The first task was to aggregate the uncertainties, disturbances, and any other undesired nonlinearities in the system into a single term called the “generalized disturbance”. Consequently, the NLESO estimates the generalized disturbance and cancel it from the input channel in an online fashion. A peaking phenomenon that existed in linear ESO (LESO) has been reduced significantly by adopting a saturation-like nonlinear function in the proposed nonlinear ESO (NLESO). Stability analysis of the NLEO is studied using finite-time Lyapunov theory, and the comparisons are presented over simulations on permanent magnet DC (PMDC) motor to confirm the effectiveness of the proposed observer concerning LESO.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

1. Active Disturbance Rejection Control for Nonlinear Systems: An Introduction;Guo,2016

2. From PID to Active Disturbance Rejection Control

3. Improved Sliding Mode Nonlinear Extended State Observer based Active Disturbance Rejection Control for Uncertain Systems with Unknown Total Disturbance;Abdul-adheem;Int. J. Adv. Comput. Sci. Appl.,2016

4. On The Active Input Output Feedback Linearization of Single Link Flexible Joint Manipulator, An Extended State Observer Approach;Abdul-Adheem;arXiv,2018

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3