Comparative Fuel Yield from Anaerobic Digestion of Emerging Waste in Food and Brewery Systems

Author:

Herman TessORCID,Nungesser Emily,Miller Kimberley E.ORCID,Davis Sarah C.ORCID

Abstract

Food waste (FW), a major part of the US waste stream, causes greenhouse gases within landfills, but there is an opportunity to divert FW to anaerobic digestion (AD) facilities that produce biogas and digestate fertilizer. The composition of FW inputs to AD determines the value of these products. This study provides insight into the effect of waste composition on the quality of AD products by first characterizing the biogas and digestate quality of anaerobically digested FW from four diets (paleolithic, ketogenic, vegetarian, and omnivorous), and then estimating the difference in biogas produced from codigested FW and brewery waste (BW). Waste feedstock mixtures were incubated in lab-scale bioreactors for 21 days with live inoculum. Biogas quality was monitored for 21–30 days in four trials. Samples were analyzed using a gas chromatograph for detection of methane (CH4) and carbon dioxide (CO2). The composition of the waste inputs had a significant impact on the quality of biogas but not on the quality of the digestate, which has implications for the value of post-AD fertilizer products. Wastes with higher proportions of proteins and fats enhanced biogas quality, unlike wastes that were rich in soluble carbohydrates. Codigestion of omnivorous food waste with carbon-rich agricultural wastes (AW) improved biogas quality, but biogas produced from BW does not necessarily improve with increasing amounts of AW in codigestion.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3