Abstract
Abstract
Waste from the human food system includes a large quantity of nutrients that pose environmental and human health risks. If these nutrients can be captured and repurposed, they could potentially offset synthetic fertilizer demands. This study reviews several technologies—including anaerobic digestion, hydrothermal carbonization (HTC), and composting—that can be used to process wastes from the human food system. This study also assesses the quantity of nutrient resources that are available from wastes, including food waste, biosolids, manure, and yard waste. Three geographic scales were analyzed. At a national level in the United States, up to 27% of nitrogen and 33% of phosphorus demands for agriculture could be met with wastes from the human food system, primarily from food waste and biosolids. Some rural localities have a greater potential for circular economies of nutrients in the food system, with the potential to meet 100% of nitrogen and phosphorus fertilizer demands using waste nutrients, as in the case of Athens County, Ohio. Benefits of offsetting synthetic fertilizer use with waste nutrients include reduced greenhouse gas (GHG) emissions, with up to 64% reduction in GHG emissions per unit of nitrogen fertilizer produced with HTC.
Funder
Sugar Bush Foundation
National Science Foundation