Abstract
The problem of identifying Distributed Denial of Service (DDos) attacks is fundamentally a classification problem in machine learning. In relevance to Cloud Computing, the task of identification of DDoS attacks is a significantly challenging problem because of computational complexity that has to be addressed. Fundamentally, a Denial of Service (DoS) attack is an intentional attack attempted by attackers from single source which has an implicit intention of making an application unavailable to the target stakeholder. For this to be achieved, attackers usually stagger the network bandwidth, halting system resources, thus causing denial of access for legitimate users. Contrary to DoS attacks, in DDoS attacks, the attacker makes use of multiple sources to initiate an attack. DDoS attacks are most common at network, transportation, presentation and application layers of a seven-layer OSI model. In this paper, the research objective is to study the problem of DDoS attack detection in a Cloud environment by considering the most popular CICIDS 2017 benchmark dataset and applying multiple regression analysis for building a machine learning model to predict DDoS and Bot attacks through considering a Friday afternoon traffic logfile.
Reference23 articles.
1. Regression algorithms for efficient detection and prediction of DDoS attacks
2. Machine Learning Techniques Used in Detection of DOS Attacks: A Literature Review;Sharma;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2016
3. DDoS attacks in cloud computing: Issues, taxonomy, and future directions
4. A Comparison of Supervised Machine Learning Algorithms for Classification of Communications Network Traffic;Perera,2017
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献