Analysis of Combustion Process of Protective Coating Paints

Author:

Polanczyk AndrzejORCID,Majder-Lopatka MalgorzataORCID,Dmochowska Anna,Salamonowicz Zdzislaw

Abstract

Structural elements in buildings exposed to high temperature may lose their original stability. Application of steel structures has several advantages; however, deflection under exposure to high temperatures may be a potential obstacle. Therefore, the aim of the study was to determine how temperature affects decomposition of protective paints applied in the construction. A dedicated installation for the analysis of the combustion process of protective coating paints in a laboratory scale was prepared. The experimental device consisted of the following parts: top-loading furnace connected to the gas conditioner, the LAT MG-2 gas mixer, and portable gas analyzer GASMET DX-4010. The following type of the protective powder coating paints were analyzed: alkyd and polyurethane. The obtained results indicated that during thermal decomposition of paints, formaldehyde, benzene, heptane, and butanol were released, however in different concentrations. Moreover, decomposition temperature affected the type and amount of released gas mixture components. With increasing temperature, increased release of formaldehyde and benzene was noticed, while the concentration of butanol and heptane decreased. Finally, the product of thermal decomposition emitted in the highest concentration was formaldehyde, which can cause irritation and sensitization in humans.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3