Numerical Simulation of Emergency Release of Liquid Petroleum Gas on a Car Gas Station

Author:

Salamonowicz Zdzislaw1ORCID,Majder-Lopatka Malgorzata1ORCID,Dmochowska Anna1ORCID,Piechota-Polanczyk Aleksandra2ORCID,Polanczyk Andrzej1ORCID

Affiliation:

1. The Main School of Fire Service, Warsaw, Poland

2. Jagiellonian University, Krakow, Poland

Abstract

LPG storage tanks may be seriously threatened by a fire coming from nearby fuels or by leakage appearance. The aim of the study was to prepare a three-dimensional model of LPG release on a car gas station under different environmental conditions. CFD simulations of liquid and gas phase release from a tank localized on a car gas station was performed. First, ALOHA software was applied to determine mass flow rate, while Ansys software was used to determine the shape and size of hazardous zone. To reflect real condition atmospheric stability classes were applied. It was observed that for classes A-D the hazardous zone was decreasing. While, for E and F class the range was increased. It was noticed that the location of the leakage affects the extent of the danger zone. For the leaking below the liquid surface analyzed LPG has liquid form. While, for the leaking above the liquid surface analyzed LPG has gas form. Furthermore, for liquid leakage the largest hazard zone of release was observed.

Publisher

Politechnika Koszalinska

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3