Abstract
Cordyceps farinosa is often utilized as a biocontrol agent because of its wide host range, strong lethality, and safety for mammals. Artificial rearing of Thitarodes armoricanus larvae is a prerequisite for the artificial cultivation of Chinese cordyceps, and C. farinosa is the most lethal pathogenic fungus during the rearing process. However, the infection process of C. farinosa is still unclear. In this study, we cloned the promoter of the C. farinosa glyceraldehyde 3-phosphate dehydrogenase gene, constructed the EGFP expression cassette, and integrated it into the C. farinosa genome via Agrobacterium transformation. We obtained a fluorescent strain for better observation of the infection process. Using two different inoculation methods of the fluorescent strain, we observed the traditional infection process through the body surface as well as through the digestive tract via feeding. Both infection modes can lead to larval death and mummification. Our findings demonstrated that during the artificial rearing of T. armoricanus, preventing C. farinosa pollution should be an important part of the disinfection of the rearing environment.
Funder
Fundamental Research Funds for the Central Universities to Southwest University
Natural Science Foundation of Chongqing