Resistance Affects the Field Performance of Insecticides Used for Control of Choristoneura rosaceana in Michigan Apples and Cherries

Author:

Hafez Abdulwahab M.ORCID,Mota-Sanchez David,Vandervoort Christine,Wise John C.

Abstract

Field-based residual bioassays and residue analysis were conducted to assess the field performance and toxicity longevity of different insecticides that had previously been associated with resistance of Choristoneura rosaceana populations collected from apple and cherry orchards. In this study, 12–24 h-old larvae of apple and cherry populations were exposed to apple and cherry leaf samples, respectively, at post-application intervals and a susceptible population served as a reference of each. In the apple and cherry trials, the order of residual longevity of insecticides that effectively controlled the tested populations was as follows: bifenthrin and spinetoram (apple: 14, cherry 21-day post-application), phosmet (apple: 7, cherry 14-day post-application), chlorantraniliprole (apple: 7-day post-application), and indoxacarb and emamectin benzoate (apple: 1, cherry 7-day post-application). Compared to the susceptible population, the resistant populations resulted in a measurable loss of field performance, or “practical resistance”, for the insecticides emamectin benzoate (at 7-day post-application), chlorantraniliprole (at 21-day post-application), and indoxacarb (at all post-application intervals) in the apple trials, while in cherry trial just indoxacarb at 7-day post-application showed a reduced efficacy. In terms of long-lasting residues, only chlorantraniliprole and indoxacarb maintained measurable leaf residues over all post-application intervals while the leaf residues of the other compounds had largely degraded within the first 7 days. These findings can help fruit growers make adjustments to their spray/re-application intervals and optimally utilize important chemical tools in their integrated pest management programs.

Funder

Michigan Project GREEEN

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3