Repelling Aedes aegypti mosquitoes with electric fields using insulated conductor wires

Author:

Jobe Ndey Bassin,Erickson Michael,Rydberg Sarah E.,Huijben Silvie,Paaijmans Krijn P.ORCID

Abstract

Background The control and prevention of mosquito-borne diseases is mostly achieved with insecticides. However, their use has led to the rapid development and spread of insecticide resistance worldwide. Health experts have called for intensified efforts to find new approaches to reduce mosquito populations and human-mosquito contact. A promising new tool is the use of electrical fields (EFs), whereby mosquitoes are repelled by charged particles in their flight path. Such particles move between two or more conductors, and the use of uninsulated copper or aluminum plates as conductors has been proven to be effective at repelling mosquitoes. Here, for the first time, we assess if EFs generated using a single row of insulated conductor wires (ICWs) can also successfully repel mosquitoes, and whether mosquitoes are equally repelled at the same EF strength when the electrodes are a) orientated differently (horizontal vs. vertical placement), and b) spaced more apart. Methodology/Principal findings Over a period of 23 hours, the number of host-seeking female Aedes aegypti mosquitoes that were successfully repelled by EFs, using ICWs, at EF strengths ranging from 0 kV/cm (control) to 9.15 kV/cm were quantified. Mosquitoes were released inside a 220×220×180 cm room and lured into a BG-Pro trap that was equipped with a BG-counter and baited with CO2 using dry ice. Mosquitoes had to pass through an EF window, that contained a single row of ICWs with alternating polarity, to reach the bait. The baseline interaction between EF strength and repellency was assessed first, after which the impact of different ICW orientations and ICW distances on repellency were determined. Over 50% of mosquitoes were repelled at EF strengths of ≥ 3.66 kV/cm. A linear regression model showed that a vertical ICW orientation (vertical vs. horizontal) had a small but insignificant increased impact on mosquito repellency (p = 0.059), and increasing ICW distance (while maintaining the same EF strength) significantly reduced repellency (p = 0.01). Conclusions/Significance ICWs can be used to generate EFs that partially repel host-seeking mosquitoes, which will reduce human-mosquito contact. While future studies need to assess if (i) increased repellency can be achieved, and (ii) a repellency of 50–60% is sufficient to impact disease transmission, it is encouraging that EF repellency using ICWs is higher compared to that of some spatial repellent technologies currently in development. This technology can be used in the housing improvement toolkit (i.e. preventing mosquito entry through eaves, windows, and doors). Moreover, the use of cheap, over-the-counter ICWs will mean that the technology is more accessible worldwide, and easier to manufacture and implement locally.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference53 articles.

1. WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017.

2. WHO. World malaria report 2023. Geneva: World Health Organization; 2023.

3. WHO. Dengue and severe dengue. Key facts. [Internet]. World Health Organization; 2023 [cited 2024 Jan 22]. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

4. Insecticide-treated nets (ITNs) in Africa 2000–2016: coverage, system efficiency and future needs for achieving international targets;S Bhatt;Malar J,2014

5. Field evaluation of a smoke-generating formulation containing beta-cypermethrin against the dengue vector in Argentina;H Masuh;J Am Mosq Control Assoc,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3