Analysis of Honeybee Drone Activity during the Mating Season in Northwestern Argentina

Author:

Ayup Maria MartaORCID,Gärtner Philipp,Agosto-Rivera José L.,Marendy PeterORCID,de Souza PauloORCID,Galindo-Cardona AlbertoORCID

Abstract

Males in Hymenopteran societies are understudied in many aspects and it is assumed that they only have a reproductive function. We studied the time budget of male honey bees, drones, using multiple methods. Changes in the activities of animals provide important information on biological clocks and their health. Yet, in nature, these changes are subtle and often unobservable without the development and use of modern technology. During the spring and summer mating season, drones emerge from the hive, perform orientation flights, and search for drone congregation areas for mating. This search may lead drones to return to their colony, drift to other colonies (vectoring diseases and parasites), or simply get lost to predation. In a low percentage of cases, the search is successful, and drones mate and die. Our objective was to describe the activity of Apis mellifera drones during the mating season in Northwestern Argentina using three methods: direct observation, video recording, and radio frequency identification (RFID). The use of RFID tagging allows the tracking of a bee for 24 h but does not reveal the detailed activity of drones. We quantified the average number of drones’ departure and arrival flights and the time outside the hive. All three methods confirmed that drones were mostly active in the afternoon. We found no differences in results between those obtained by direct observation and by video recording. RFID technology enabled us to discover previously unknown drone behavior such as activity at dawn and during the morning. We also discovered that drones may stay inside the hive for many days, even after initiation of search flights (up to four days). Likewise, we observed drones to leave the hive for several days to return later (up to three days). The three methods were complementary and should be considered for the study of bee drone activity, which may be associated with the diverse factors influencing hive health.

Publisher

MDPI AG

Subject

Insect Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Standard methods for direct observation of honey bee ( Apis mellifera L.) nuptial flights;Journal of Apicultural Research;2023-09-18

2. Prevalence of Varroa destructor and first report of Nosema sp. in Apis mellifera drone congregation areas;Acta Zoológica Lilloana;2023-09-14

3. Technological Adoption and Challenges in Beekeeping: A Review;2023 IEEE International Conference on Agrosystem Engineering, Technology & Applications (AGRETA);2023-09-09

4. RFID Technology for Animal Tracking: A Survey;IEEE Journal of Radio Frequency Identification;2023

5. Monitoramento de Abelhas Africanizadas (Apis mellifera L.) usando tecnologia de rádio frequência (RFID) em Belém, Pará;ACTA Apicola Brasilica;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3