Affiliation:
1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
2. Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Funder
National Key R&D Program of China
Key Research and Development Program of Shaanxi Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献