Effect of Cotesia ruficrus Parasitization on Diversity and Community Composition of Intestinal Bacteria in Spodoptera frugiperda

Author:

Li Xian1,Jia Jing-Jing2,An Jun-Long1,Meng Fan-Xin1,Liu Tong-Xian3,Zhang Shi-Ze1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China

2. Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Research Center of Quality Safety and Standards for Agro-Products, Hainan Academy of Agricultural Sciences, Haikou 571100, China

3. Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China

Abstract

Parasitoids have the potential to alter the gut microbiota of their host insects post-parasitization, thereby influencing the host’s physiological functions and creating a more favorable environment for the survival of the parasitoid’s progeny. Cotesia ruficrus is a native enemy of the important invasive fall armyworm (FAW) pest, Spodoptera frugiperda, in China, exhibiting significant pest control capabilities. To investigate the impact of C. ruficrus on the gut bacteria of FAW caterpillars following parasitism, we used 16S rRNA sequencing technology to analyze the diversity and richness of gut bacteria in both long-term laboratory and short-term laboratory FAW caterpillars. The results revealed Enterococcus as the predominant bacteria across all treatments, while no significant differences were observed in the diversity and richness of gut bacteria between non-parasitized and parasitized long-term laboratory FAW caterpillars. Similarly, while the diversity of gut bacteria in non-parasitized and parasitized short-term laboratory FAWs showed no significant variance, a marked discrepancy in richness was noted. Moreover, the richness of gut bacteria in short-term laboratory FAW caterpillars surpassed that of their long-term laboratory counterparts. In addition, it was found that Corynebacterium existed only in the intestinal tract of FAW caterpillars that were parasitized by C. ruficrus. These results substantiate that C. ruficrus parasitization can alter the gut microbiota of FAW caterpillars, providing valuable insights into the interplay between gut microbiota and the dynamics of parasitoid–host interactions.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3