Characterizing Billbug (Sphenophorus spp.) Seasonal Biology Using DNA Barcodes and a Simple Morphometric Analysis

Author:

Rodriguez-Soto Marian M.,Richmond Douglas S.ORCID,Ramirez Ricardo A.,Xiong XiORCID,Enders Laramy S.

Abstract

Billbugs (Sphenophorus spp.) are a complex of grass-feeding weevil species that reduce the aesthetic and functional qualities of turfgrass. Effective billbug monitoring and management programs rely on a clear understanding of their seasonal biology. However, our limited understanding of regional variation in the species compositions and seasonal biology of billbugs, stemming primarily from our inability to identify the damaging larval stage to species level, has hindered efforts to articulate efficient IPM strategies to growers. We used a combination of DNA barcoding methods and morphometric measures to begin filling critical gaps in our understanding of the seasonal biology of the billbug species complex across a broad geographic range. First, we developed a DNA barcoding reference library using cytochrome oxidase subunit 1 (COI) sequences from morphologically identified adult billbugs collected across Indiana, Missouri, Utah and Arizona. Next, we used our reference library for comparison and identification of unknown larval specimens collected across the growing season in Utah and Indiana. Finally, we combined our DNA barcoding approach with larval head capsule diameter, a proxy for developmental instar, to develop larval phenology charts. Adult COI sequences varied among billbug species, but variation was not influenced by geography, indicating that this locus alone was useful for resolving larval species identity. Overlaid with head capsule diameter data from specimens collected across the growing season, a better visualization of billbug species composition and seasonal biology emerged. This approach will provide researchers with the tools necessary to fill critical gaps in our understanding of billbug biology and facilitate the development of turfgrass pest management programs.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3