Real-Time Detection and Classification of Scirtothrips dorsalis on Fruit Crops with Smartphone-Based Deep Learning System: Preliminary Results

Author:

Niyigena Gildas1,Lee Sangjun2ORCID,Kwon Soonhwa3,Song Daebin4,Cho Byoung-Kwan12ORCID

Affiliation:

1. Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

3. Citrus Research Institute, Seogwipo 63607, Republic of Korea

4. Department of Biosystem Bio-Industrial Machinery Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

This study proposes a deep-learning-based system for detecting and classifying Scirtothrips dorsalis Hood, a highly invasive insect pest that causes significant economic losses to fruit crops worldwide. The system uses yellow sticky traps and a deep learning model to detect the presence of thrips in real time, allowing farmers to take prompt action to prevent the spread of the pest. To achieve this, several deep learning models are evaluated, including YOLOv5, Faster R-CNN, SSD MobileNetV2, and EfficientDet-D0. EfficientDet-D0 was integrated into the proposed smartphone application for mobility and usage in the absence of Internet coverage because of its smaller model size, fast inference time, and reasonable performance on the relevant dataset. This model was tested on two datasets, in which thrips and non-thrips insects were captured under different lighting conditions. The system installation took up 13.5 MB of the device’s internal memory and achieved an inference time of 76 ms with an accuracy of 93.3%. Additionally, this study investigated the impact of lighting conditions on the performance of the model, which led to the development of a transmittance lighting setup to improve the accuracy of the detection system. The proposed system is a cost-effective and efficient alternative to traditional detection methods and provides significant benefits to fruit farmers and the related ecosystem.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3