Abstract
In a laboratory assay, it was shown that B. bassiana BCC48145, BCC2660, and P. lilacinum TBRC10638 were the three strains that exhibited the highest insecticidal activity against chili thrips, causing 92.5% and 91.86% and 92.3% corrected mortality, respectively. The fungi B. bassiana BCC48145 and P. lilacinum TBRC10638 were selected for greenhouse spraying. Cytotoxicity test of the extracts from both fungi evaluated against 4 animal cell lines: KB; human oral cavity carcinoma, MCF7; human breast adenocarcinoma, NCI-H187; human small cell lung carcinoma and GFP-expressing Vero cells, showed none-cytotoxic to all cell lines. An efficacy validation in the greenhouse showed that P. lilacinum TBRC 10638 was more effective than B. bassiana BCC48145 and could control the thrips up to 80% when using the fungus at 108 spores/mL. The LC50 values of P. lilacinum TBRC 10638 against chili thrips based on total thrips count from two experiments were 1.42 × 108 and 1.12 × 107 spores/mL when the fungal spores were sprayed once a week. The optimal concentration of P. lilacinum TBRC 10638 spores for effective control of chili thrips was determined at 1.41 × 109 spores/mL. The average efficacy of P. lilacinum TBRC 10638 for thrips control from 3 field trials was 30.08%, 14.39%, and 29.92%. This result was not significantly different from that of the chemical insecticide treatment group, which showed efficacy at 19.27%, 14.92%, and 19.97%. Furthermore, there was no difference in productivity among the different treatment groups. Our results demonstrated that P. lilacinum TBRC 10638 is a promising biocontrol agent that could be used as an alternative to chemical insecticide for controlling chili thrips.
Funder
National Science and Technology Development Agency (NSTDA), Thailand
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献