Succession of Ambrosia Beetles Colonizing the Logs of Fallen Alder and Birch Trees

Author:

Peng Yong,Buranapanichpan Anut,Kamata NaotoORCID

Abstract

Ambrosia beetles bore into the xylem of woody plants, reduce timber quality, and can sometimes cause devastating damage to forest ecosystems. The colonization by different beetle species is dependent on host status, from healthy trees to the early stages of wood decay, although the precise factors influencing their host selection are not well known. Classic studies on plant ecology have determined the niches of different plant species in vegetation succession, based on comparisons of successions in different locations using ordination analyses, although the factors influencing the colonization of each species are largely undetermined. In this study, to characterize the succession of ambrosia beetles after tree felling, two Betulaceae tree species, an alder (Alnus hirsuta), and a white birch (Betula platyphylla var. japonica) were felled as bait logs in central Hokkaido, Japan, in 2016. From 2016 to 2018, the bait logs were dissected late in each flying season, and ambrosia beetles were collected from the logs. During the period of monitoring, the beetle colonization in both tree species was mostly concentrated in the first 2 years. We observed similarities in the beetle faunas colonizing the two plant species, and that individual species appeared in the same sequence in the logs of the two plant species, although the temporal patterns of colonization differed. Consequently, significant differences in beetle community compositions in the two host species were detected in each of the first 2 years of the study, whereas the difference in the overall composition of beetle assemblages (=pooled over 3 years) between the two plant species was smaller than that in either 2016 or 2017. We speculated that the differences in the temporal pattern of colonization could be attributable to differences in the rates at which the wood of the two tree species deteriorated. Treptoplatypus severini and Xylosandrus crassiusculus were considered to be early-successional species that commenced log colonization soon after felling, although T. severini has a wide niche and was collected during all 3 years of the study. Conversely, Xyleborinus attenuatus and Heteroborips seriatus were identified as probable late-successional species that showed a preference for older logs.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Insect Science

Reference68 articles.

1. Bark Beetles: Biology and Ecology of Native and Invasive Species;Vega,2015

2. Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan

3. A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States

4. Exotic bark and ambrosia beetles in the USA: Potential and current invaders;Haack,2013

5. Bark and Ambrosia Beetles of South America (Coleoptera: Scolytidae);Wood,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3