A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States

Author:

Fraedrich S. W.1,Harrington T. C.2,Rabaglia R. J.3,Ulyshen M. D.1,Mayfield A. E.4,Hanula J. L.5,Eickwort J. M.4,Miller D. R.1

Affiliation:

1. Southern Research Station, USDA Forest Service, Athens, GA 30602

2. Department of Plant Pathology, Iowa State University, Ames 50011

3. Forest Health Protection, USDA Forest Service, Arlington, VA 22209

4. Florida Department of Agriculture and Consumer Services, Division of Forestry, Gainesville 32608

5. Southern Research Station, USDA Forest Service Athens, GA 30602

Abstract

Extensive mortality of redbay has been observed in the coastal plain counties of Georgia and southeastern South Carolina since 2003 and northeastern Florida since 2005. We show that the redbay mortality is due to a vascular wilt disease caused by an undescribed Raffaelea sp. that is a fungal symbiont of Xyleborus glabratus, an exotic ambrosia beetle. Trees affected by the disease exhibit wilt symptoms that include a black discoloration of the sapwood. Redbay trees and containerized seedlings died within 5 to 12 weeks after inoculation with the Raffaelea sp. When redbay seedlings were challenged with X. glabratus, the beetles tunneled into 96% of the plants, 70% died, and the Raffaelea sp. was recovered from 91%. X. glabratus and the Raffaelea sp. have also been associated with mortality of sassafras, and the Raffaelea sp. has been isolated from wilted pondberry and pondspice. Additional inoculation studies have shown that the Raffaelea sp. is pathogenic to sassafras, spicebush, and avocado, but not to red maple. Female adults of X. glabratus have paired mycangia near the mandibles, and the Raffaelea sp. is routinely isolated from the heads of beetles. The fungus is apparently introduced into healthy redbay during beetle attacks on stems and branches. The wilt currently affecting redbay and sassafras represents a major threat to other members of the Lauraceae indigenous to the Americas, including avocado in commercial production.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3