The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.)

Author:

DeGrandi-Hoffman Gloria,Corby-Harris VanessaORCID,Carroll Mark,Toth Amy L.,Gage Stephanie,Watkins deJong Emily,Graham Henry,Chambers Mona,Meador Charlotte,Obernesser Bethany

Abstract

Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.

Funder

USDA-APHIS

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3