Cascaded Aggregation Convolution Network for Salient Grain Pests Detection

Author:

Yu Junwei12ORCID,Chen Shihao12,Liu Nan3,Zhai Fupin12,Pan Quan24

Affiliation:

1. Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China

2. Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China

3. Basis Department, PLA Information Engineering University, Zhengzhou 450001, China

4. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Pest infestation poses significant threats to grain storage due to pests’ behaviors of feeding, respiration, excretion, and reproduction. Efficient pest detection and control are essential to mitigate these risks. However, accurate detection of small grain pests remains challenging due to their small size, high variability, low contrast, and cluttered background. Salient pest detection focuses on the visual features that stand out, improving the accuracy of pest identification in complex environments. Drawing inspiration from the rapid pest recognition abilities of humans and birds, we propose a novel Cascaded Aggregation Convolution Network (CACNet) for pest detection and control in stored grain. Our approach aims to improve detection accuracy by employing a reverse cascade feature aggregation network that imitates the visual attention mechanism in humans when observing and focusing on objects of interest. The CACNet uses VGG16 as the backbone network and incorporates two key operations, namely feature enhancement and feature aggregation. These operations merge the high-level semantic information and low-level positional information of salient objects, enabling accurate segmentation of small-scale grain pests. We have curated the GrainPest dataset, comprising 500 images showcasing zero to five or more pests in grains. Leveraging this dataset and the MSRA-B dataset, we validated our method’s efficacy, achieving a structure S-measure of 91.9%, and 90.9%, and a weighted F-measure of 76.4%, and 91.0%, respectively. Our approach significantly surpasses the traditional saliency detection methods and other state-of-the-art salient object detection models based on deep learning. This technology shows great potential for pest detection and assessing the severity of pest infestation based on pest density in grain storage facilities. It also holds promise for the prevention and control of pests in agriculture and forestry.

Funder

Key Technologies R&D Program of Henan Province

Open Project of Henan University of Technology Grain Information Processing Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3