Simulation of Heat Flow in a Synthetic Watershed: Lags and Dampening across Multiple Pathways under a Climate-Forcing Scenario

Author:

Feinstein Daniel,Hunt Randall,Morway Eric

Abstract

Although there is widespread agreement that future climates tend toward warming, the response of aquatic ecosystems to that warming is not well understood. This work, a continuation of companion research, explores the role of distinct watershed pathways in lagging and dampening climate-change signals. It subjects a synthetic flow and transport model to a 30-year warming signal based on climate projections, quantifying the heat breakthrough on a monthly time step along connected pathways. The system corresponds to a temperate watershed roughly 27 km on a side and consists of (a) land-surface processes of overland flow, (b) infiltration through an unsaturated zone (UZ) above an unconfined sandy aquifer overlying impermeable bedrock, and (c) groundwater flow along shallow and deep pathlines that converge as discharge to a surface-water network. Numerical simulations show that about 40% of the warming applied to watershed infiltration arrives at the water table and that the UZ stores a large fraction of the upward-trending heat signal. Additionally, once groundwater reaches the surface-water network after traveling through the saturated zone, only about 10% of the original warm-up signal is returned to streams by discharge. However, increases in the simulated streamflow temperatures are of similar magnitude to increases at the water table, due to the addition of heat by storm runoff, which bypasses UZ and groundwater storage and counteracts subsurface dampening. The synthetic modeling method and tentative findings reported here provide a potential workflow for real-world applications of climate-change modeling at the full watershed scale.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3