Abstract
In recent years, with the rapid development of deep learning, the requirements for the performance of the corresponding real-time recognition system are getting higher and higher. However, the rapid expansion of data volume means that time delay, power consumption, and cost have become problems that cannot be ignored. In this case, the traditional neural network is almost impossible to use to achieve productization. In order to improve the potential problems of a neural network facing a huge number of datasets without affecting the recognition effect, the model compression method has gradually entered people’s vision. However, the existing model compression methods still have some shortcomings in some aspects, such as low rank decomposition, transfer/compact convolution filter, knowledge distillation, etc. These problems enable the traditional model compression to cope with the huge amount of computation brought by large datasets to a certain extent, but also make the results unstable on some datasets, and the system performance has not been improved satisfactorily. To address this, we proposed a structured network compression and acceleration method for the convolutional neural network, which integrates the pruned convolutional neural network and the recurrent neural network, and applied it to the lip-recognition system in this paper.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献