Experimental and Numerical Investigations of Dynamic Failure Mechanisms of Underground Roadway Induced by Incident Stress Wave

Author:

He Zhi-Long,Lu Cai-Ping,Zhang Xiu-Feng

Abstract

The mechanisms of dynamic disasters around underground roadways/tunnels were examined by adopting split Hopkinson pressure bar (SHPB) laboratory tests to reproduce the failure process of the surrounding rock subjected to incident stress waves. On the basis of ensuring the consistency of numerical simulations with the experimental results, the failure mechanisms of the surrounding rock and spatiotemporal evolution of the hoop stress around the hole were studied by using a two-dimensional particle flow code (PFC2D). The results of the numerical simulation indicate that tensile stress and compressive stress concentrate along the horizontal and vertical directions around the hole, respectively, owing to the instantaneous incidence of compressive stress waves. The failure modes of surrounding rocks are significantly different when the hole is subjected to various intensities of incident stress waves. In addition, the stability of the surrounding rock of the hole is greatly affected by the amplitude and wavelength of the incident wave and the elastic modulus of the surrounding rock.

Funder

Cai-ping Lu

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3