Abstract
The airport network is a highly dynamic and complex network connected by air routes, and it is difficult to study the impact of delays at one airport on another airport by means of human intervention. Due to the delay propagation law contained in the delay time series, some studies have used Granger causality and transfer entropy to explore whether there is a causal relationship between any two airports. However, no research has yet established a delay causal network from the perspective of the airport network as a whole. To this end, an attention mechanism is introduced into the deep convolutional network architecture, and a deep temporal convolution prediction model considering the attention mechanism is proposed, so as to establish the relationship between different airport delay time series under the same network architecture. According to the attention factor score, the delay propagation causality between airports is preliminarily screened, and the direct causality is verified based on a t-test and propagation delay analysis. Taking China’s civil airport network as an example, the method proposed in this paper can not only discover the causal relationship of delays between airports but also characterize the strength of the relationship. Further analysis found that each airport is affected by an average of six airports, and airports with small delays are more likely to be affected by other airports.
Funder
the State Key Laboratory of Air Traffic Management System and Technology
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献