Fatigue Crack Growth Behavior of Different Zones in an Overmatched Welded Joint Made with D32 Marine Structural Steel

Author:

Song Wei1ORCID,Man Zheng2,Xu Jie2,Wang Xiaoxi1,Liu Chengqiang1,Zhou Guangtao3,Berto Filippo4

Affiliation:

1. School of Mechanical & Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China

2. School of Materials Science and Physics, China University of Mining and Technology (CUMT), Xuzhou 221116, China

3. Key Laboratory of Special Energy Field Manufacturing in Fujian Province, College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China

4. Department of Mechanical and Aerospace Engineering, SAPIENZA—Università Di Roma, 00184 Roma, Italy

Abstract

Applying fracture mechanics theory to heterogeneous welded joints might lead to an uncertain assessment of fatigue crack propagation behavior and, consequently, an inaccurate estimation of the cyclic loading capacity and fatigue life of welded structures. Combining experimental testing and analytical equations of the marine overmatched welded joints of D32 marine structural steel provided a view of the influence of strength heterogeneity on fatigue crack growth (FCG) behavior under constant cyclic loading. FCG testing was conducted using compact tension specimens under different stress ratios. The effect of residual stress on the FCG behaviors of the heat-affected zones (HAZs) and fusion zones (FZs) of the compact tension (CT) specimens was examined in the overmatched welded joints. Subsequently, the welding residual stresses were removed by post-welding heat treatment (PWHT) to focus the FCGR assessment on the microstructural effect. The results indicated that the FCG rates (FCGRs) of the FZ and HAZ materials obviously varied in as-welded and stress-relieved states. The existence of residual stress in the overmatched welded joints led to a decrease in FCG rates and prolonged the fatigue crack propagation life for the FZs and HAZs. Moreover, the FCGR increased in the base metal (BM), HAZ, and FZ with the increase in the stress ratio. The FCG curves of these materials were fitted to correct the stress ratios using the NASGRO equation. Finally, an analytical analysis of the FCGR based on the NASGRO equation revealed the relationship between different stress ratios for different materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Postdoctoral Science Foundation of China

Xuzhou Basic Research Program of Science and Technology

Qinglan project of Jiangsu province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3