Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint

Author:

Yang Jun12,Chen Xianmin12,Zhao Huaxia3,Dong Jihong3,Jin Feng4

Affiliation:

1. National Key Laboratory of Strength and Structural Integrity, AVIC Aircraft Strength Research Institute, 86 2nd Dianzi Road, Xi’an 710065, China

2. The 3rd Department, AVIC Aircraft Strength Research Institute, 86 2nd Dianzi Road, Xi’an 710065, China

3. AVIC Manufacturing Technology Institute, Beijing 100024, China

4. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

The reliability of friction stir welded joints is a critical concern, particularly given their potential applications in the aerospace manufacturing industry. This study offers a quasi-in situ observation of the microstructural response during fatigue crack growth (FCG) of a friction stir welded AA2024-T4 joint, aiming to correlate fatigue crack growth behavior with mechanical properties investigated using electron backscatter diffraction (EBSD). Notched compact tension (CT) specimens corresponding to the morphology of the stir zone (SZ), advancing side (AS), and retreating side (RS) were meticulously designed. The findings indicate that the welding process enhances the joint’s resistance to fatigue crack growth, with the base metal exhibiting a shorter fatigue life (i.e., ~105 cycles) compared to the welding zones (SZ ~ 3.5 × 105 cycles, AS ~ 2.5 × 105 cycles, and RS ~ 3.0 × 105 cycles). Crack propagation occurs within the stir zone, traversing refined grains, which primarily contribute to the highest fatigue life and lowest FCG rate. Additionally, cracks initiate in AS and RS, subsequently expanding into the base metal. Moreover, the study reveals a significant release of residual strain at the joint, particularly notable in the Structural-CT-RS (Str-CT-RS) sample compared to the Str-CT-AS sample during the FCG process. Consequently, the FCG rate of Str-CT-AS is higher than that of Str-CT-RS. These findings have significant implications for improving the reliability and performance of aerospace components.

Funder

the National Natural Science Foundations of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3