A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk

Author:

Ma Huiyun1,Liu Zengwei1,Jiang Kun1,Jiang Bingbo2,Feng Huihui1ORCID,Hu Shuaifeng1ORCID

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China

Abstract

Satellite remote sensing provides a potential technology for detecting fog at dawn and dusk on a large scale. However, the spectral characteristics of fog at dawn and dusk are similar to those of the ground surface, which makes satellite-based fog detection difficult. With the aid of time-series datasets from the Himawari-8 (H8)/AHI, this study proposed a novel algorithm of the self-adaptive threshold of visual background extractor (ST-ViBe) model for satellite fog detection at dawn and dusk. Methodologically, the background model was first built using the difference between MIR and TIR (BTD) and the local binary similarity patterns (LBSP) operator. Second, BTD and scale invariant local ternary pattern (SILTP) texture features were coupled to form scene factors, and the detection threshold of each pixel was determined adaptively to eliminate the influence of the solar zenith angles. The background model was updated rapidly by accelerating the updating rate and increasing the updating quantity. Finally, the residual clouds were removed with the traditional cloud removal method to achieve accurate detection of fog at dawn and dusk over a large area. The validation results demonstrated that the ST-ViBe algorithm could detect fog at dawn and dusk precisely, and on a large scale. The probability of detection, false alarm ratio, and critical success index were 72.5%, 18.5%, 62.4% at dawn (8:00) and 70.6%, 33.6%, 52.3% at dusk (17:00), respectively. Meanwhile, the algorithm mitigated the limitations of the traditional algorithms, such as illumination mutation, missing detection, and residual shadow. The results of this study could guide satellite fog detection at dawn and dusk and improve the detection of similar targets.

Funder

National Natural Science Foundation of China

Nature Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3