Quantification of Microtopography in Natural Ecosystems Using Close-Range Remote Sensing

Author:

Shukla Tarini12ORCID,Tang Wenwu234ORCID,Trettin Carl C.5ORCID,Chen Gang46ORCID,Chen Shenen1ORCID,Allan Craig4

Affiliation:

1. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

2. Center for Applied Geographic Information Science (CAGIS), University of North Carolina at Charlotte, Charlotte, NC 28223, USA

3. School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

4. Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

5. Center for Forested Wetlands Research, USDA Forest Service, Cordesville, SC 29434, USA

6. Laboratory for Remote Sensing and Environmental Change (LRSEC), Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

Microtopography plays an important role in various ecological, hydrologic, and biogeochemical processes. However, quantifying the characteristics of microtopography represents a data-intensive challenge. Over the last decade, high-resolution or close-range remote sensing data and techniques have emerged as powerful tools to quantify microtopography. Traditional field surveys were mostly limited to transects or small plots, using limited sets of observations but with the decrease in the cost of close-range remote sensing technologies and the increase in computing performance, the microtopography even in forested environments can be assessed. The main objective of this article is to provide a systematic framework for microtopographic studies using close-range remote sensing technologies. This is achieved by reviewing the application of close-range remote sensing to capture microtopography and develop microtopographic models in natural ecosystems. Specifically, to achieve the main objectives, we focus on addressing the following questions: (1) What terrain attributes represent microtopography in natural ecosystems? (2) What spatial resolution of terrain attributes is needed to represent the microtopography? (3) What methodologies have been adopted to collect data at selected resolutions? (4) How to assess microtopography? Current research, challenges, and applicability of close-range remote sensing techniques in different terrains are analyzed with an eye to enhancing the use of these new technologies. We highlight the importance of using a high-resolution DEM (less than 1 m2 spatial resolution) to delineate microtopography. Such a high-resolution DEM can be generated using close-range remote sensing techniques. We also illustrate the need to move beyond elevation and include terrain attributes, such as slope, aspect, terrain wetness index, ruggedness, flow accumulation, and flow path, and assess their role in influencing biogeochemical processes such as greenhouse gas emissions, species distribution, and biodiversity. To assess microtopography in terms of physical characteristics, several methods can be adopted, such as threshold-based classification, mechanistically-based delineation, and machine learning-based delineation of microtopography. The microtopographic features can be analyzed based on physical characteristics such as area, volume, depth, and perimeter, or by using landscape metrics to compare the classified microtopographic features. Remote sensing techniques, when used in conjunction with field experiments/data, provide new avenues for researchers in understanding ecological functions such as biodiversity and species distribution, hydrological processes, greenhouse gas emissions, and the environmental factors that influence those parameters. To our knowledge, this article provides a comprehensive and detailed review of microtopography data acquisition and quantification for natural ecosystem studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3