Spatiotemporal Variations in the Sensitivity of Vegetation Growth to Typical Climate Factors on the Qinghai–Tibet Plateau

Author:

Wu Kai1ORCID,Chen Jiahao1,Yang Han1,Yang Yue1,Hu Zhongmin1

Affiliation:

1. School of Ecology and Environment, Hainan University, Haikou 570000, China

Abstract

Gaining knowledge about vegetation sensitivity in response to climate change is a current research priority in the context of accelerated shifts generated by global warming, especially for the Qinghai–Tibet Plateau (QTP), where vegetation is known to be highly sensitive to ongoing climate change. However, the temporal variability of vegetation sensitivity in response to climate change is still poorly understood on the QTP. Here, we articulate the interannual variability of the vegetation sensitivity in response to typical climate factors, including temperature, solar radiation, and water availability, on the QTP during 2000–2021, using a variety of indicators characterizing vegetation dynamics, including the Leaf Area Index (LAI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and solar-induced chlorophyll fluorescence (SIF) data. The results indicate that temperature exerted positive impacts on forests, grasslands, and barren or sparsely vegetated areas (BSVs). However, all the land-cover types showed decreasing sensitivity to temperature variability. Solar radiation had a positive impact on forests, while it had a negative impact on grasslands and BSVs. An increasing trend was observed for forests, while a decreasing trend was found for grasslands and BSVs regarding their sensitivity to solar radiation. Water availability exerted a positive impact on grasslands and BSVs, and no obvious impact direction could be determined for forests. Over the last two decades, forests and BSVs exhibited increasing sensitivity to water availability, and no obvious trend was observed for grasslands. Overall, temperature was the most important climate factor, followed by solar radiation and water availability, regarding the regulation of vegetation sensitivity on the QTP. Spatially, temperature and solar radiation jointly dominated the vegetation sensitivity in the central to eastern QTP. Conversely, water availability dominated the sensitivity of forests in the southeastern QTP and grasslands in the northeastern and southwestern QTP. This study provides theoretical support for the ecological conservation and management of the QTP in the context of ongoing climate change.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

Hainan Provincial Natural Science Foundation of China

Hainan University start-up fund

Key RGD Program of Hainan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3