AiTLAS: Artificial Intelligence Toolbox for Earth Observation

Author:

Dimitrovski Ivica12,Kitanovski Ivan12,Panov Panče13,Kostovska Ana13,Simidjievski Nikola134ORCID,Kocev Dragi13

Affiliation:

1. Bias Variance Labs, d.o.o., 1000 Ljubljana, Slovenia

2. Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia

3. Department of Knowledge Technologies, Jožef Stefan Institute, 1000 Ljubljana, Slovenia

4. Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK

Abstract

We propose AiTLAS—an open-source, state-of-the-art toolbox for exploratory and predictive analysis of satellite imagery. It implements a range of deep-learning architectures and models tailored for the EO tasks illustrated in this case. The versatility and applicability of the toolbox are showcased in a variety of EO tasks, including image scene classification, semantic image segmentation, object detection, and crop type prediction. These use cases demonstrate the potential of the toolbox to support the complete data analysis pipeline starting from data preparation and understanding, through learning novel models or fine-tuning existing ones, using models for making predictions on unseen images, and up to analysis and understanding of the predictions and the predictive performance yielded by the models. AiTLAS brings the AI and EO communities together by facilitating the use of EO data in the AI community and accelerating the uptake of (advanced) machine-learning methods and approaches by EO experts. It achieves this by providing: (1) user-friendly, accessible, and interoperable resources for data analysis through easily configurable and readily usable pipelines; (2) standardized, verifiable, and reusable data handling, wrangling, and pre-processing approaches for constructing AI-ready data; (3) modular and configurable modeling approaches and (pre-trained) models; and (4) standardized and reproducible benchmark protocols including data and models.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene Classification;IEEE Geoscience and Remote Sensing Letters;2024

2. Multi-Band Feature Fusion in Satellite Images for Land Cover Classification;2023 International Workshop on Intelligent Systems (IWIS);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3