U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery

Author:

Dimitrovski Ivica1ORCID,Spasev Vlatko1,Loshkovska Suzana1,Kitanovski Ivan1ORCID

Affiliation:

1. Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia

Abstract

Semantic segmentation of remote sensing imagery stands as a fundamental task within the domains of both remote sensing and computer vision. Its objective is to generate a comprehensive pixel-wise segmentation map of an image, assigning a specific label to each pixel. This facilitates in-depth analysis and comprehension of the Earth’s surface. In this paper, we propose an approach for enhancing semantic segmentation performance by employing an ensemble of U-Net models with three different backbone networks: Multi-Axis Vision Transformer, ConvFormer, and EfficientNet. The final segmentation maps are generated through a geometric mean ensemble method, leveraging the diverse representations learned by each backbone network. The effectiveness of the base U-Net models and the proposed ensemble is evaluated on multiple datasets commonly used for semantic segmentation tasks in remote sensing imagery, including LandCover.ai, LoveDA, INRIA, UAVid, and ISPRS Potsdam datasets. Our experimental results demonstrate that the proposed approach achieves state-of-the-art performance, showcasing its effectiveness and robustness in accurately capturing the semantic information embedded within remote sensing images.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3