Infrared Cirrus Detection Using Non-Convex Rank Surrogates for Spatial-Temporal Tensor

Author:

Xiao Shengyuan12,Peng Zhenming12ORCID,Li Fusong3

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Laboratory of Imaging Detection and Intelligent Perception, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Xi’an Institute of Electromechanical Information Technology, Xi’an 710065, China

Abstract

Infrared small target detection (ISTD) plays a significant role in earth observation infrared systems. However, some high reflection areas have a grayscale similar to the target, which will cause a false alarm in the earth observation infrared system. For the sake of raising the detection accuracy, we proposed a cirrus detection measure based on low-rank sparse decomposition as a supplementary method. To better detect cirrus that may be sparsely insufficient in a single frame image, the method treats the cirrus sequence image with time continuity as a tensor, then uses the visual saliency of the image to divide the image into a cirrus region and a cirrus-free region. Considering that the classical tensor rank surrogate cannot approximate the tensor rank very well, we used a non-convex tensor rank surrogate based on the Laplace function for the spatial-temporal tensor (Lap-NRSSTT) to surrogate the tensor rank. In an effort to compute the proposed model, we used a high-efficiency optimization approach on the basis of alternating the direction method of multipliers (ADMM). Finally, final detection results were obtained by the reconstructed cirrus images with a set threshold segmentation. Results indicate that the proposed scheme achieves better detection capabilities and higher accuracy than other measures based on optimization in some complex scenarios.

Funder

Natural Science Foundation of Sichuan Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3