Abstract
Owing to the limitations of the imaging principle as well as the properties of imaging systems, infrared images often have some drawbacks, including low resolution, a lack of detail, and indistinct edges. Therefore, it is essential to improve infrared image quality. Considering the information of neighbors, a description of sparse edges, and by avoiding staircase artifacts, a new super-resolution reconstruction (SRR) method is proposed for infrared images, which is based on fractional order total variation (FTV) with quaternion total variation and the L p quasinorm. Our proposed method improves the sparsity exploitation of FTV, and efficiently preserves image structures. Furthermore, we adopt the plug-and-play alternating direction method of multipliers (ADMM) and the fast Fourier transform (FFT) theory for the proposed method to improve the efficiency and robustness of our algorithm; in addition, an accelerated step is adopted. Our experimental results show that the proposed method leads to excellent performances in terms of an objective evaluation and the subjective visual effect.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献