Abstract
Optogenetics has the advantages of a fast response time, reversibility, and high spatial and temporal resolution, which make it desirable in the metabolic engineering of chassis cells. In this study, a light-induced expression system of Yarrowia lipolytica was constructed, which successfully achieved the synthesis and functional verification of Bleomycin resistance protein (BleoR). The core of the blue light-induced system, the light-responsive element (TF), is constructed based on the blue photosensitive protein EL222 and the transcription activator VP16. The results show that the light-induced sensor based on TF, upstream activation sequence (C120)5, and minimal promoter CYC102 can respond to blue light and initiate the expression of GFPMut3 report gene. With four copies of the responsive promoter and reporter gene assembled, they can produce a 128.5-fold higher fluorescent signal than that under dark conditions after 8 h of induction. The effects of light dose and periodicity on this system were investigated, which proved that the system has good spatial and temporal controllability. On this basis, the light-controlled system was used for the synthesis of BleoR to realize the expression and verification of functional protein. These results demonstrated that this system has the potential for the transcriptional regulation of target genes, construction of large-scale synthetic networks, and overproduction of the desired product.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献