A Novel Synthetic Antibody Library with Complementarity-Determining Region Diversities Designed for an Improved Amplification Profile

Author:

Bai Xuelian,Jang Moonseon,Lee Nam Ju,Nguyen Thi Thu Ha,Jung Mooyoung,Hwang Jeong Yeon,Shim HyunboORCID

Abstract

Antibody discovery by phage display consists of two phases, i.e., the binding phase and the amplification phase. Ideally, the selection process is dominated by the former, and all the retrieved clones are amplified equally during the latter. In reality, the amplification efficiency of antibody fragments varies widely among different sequences and, after a few rounds of phage display panning, the output repertoire often includes rapidly amplified sequences with low or no binding activity, significantly diminishing the efficiency of antibody isolation. In this work, a novel synthetic single-chain variable fragment (scFv) library with complementarity-determining region (CDR) diversities aimed at improved amplification efficiency was designed and constructed. A previously reported synthetic scFv library with low, non-combinatorial CDR diversities was panned against protein A superantigen, and the library repertoires before and after the panning were analyzed by next generation sequencing. The enrichment or depletion patterns of CDR sequences after panning served as the basis for the design of the new library. Especially for CDR-H3 with a higher and more random diversity, a machine learning method was applied to predict potential fast-amplified sequences among a simulated sequence repertoire. In a direct comparison with the previous generation library, the new library performed better against a panel of antigens in terms of the number of binders isolated, the number of unique sequences, and/or the speed of binder enrichment. Our results suggest that the amplification-centric design of sequence diversity is a valid strategy for the construction of highly functional phage display antibody libraries.

Funder

National Research Foundation of Korea

Korea Drug Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3